Quantifying anthropogenic influences on the atmospheric chemistry of the western Sierra Nevada:

A background to assessing the role of biogenics

Michael Dillon
Cohen Group - UC Berkeley
December 10, 1999

Collaborators

Hydrocarbon, ozone and meteorological observations

Prof. Allen Goldstein Gunnar Schade Marcus Lamanna Meredith Bauer Jean-Marc Fracheboud

Nitrogen Oxide observations and modeling

Joel Thornton
Paul Wooldridge
Doug Day
Prof. Ron Cohen

Cohen Group Research at Blodgett Forest

- Ozone Abundance and Chemistry
- NO_x and NO_y Photochemistry and Fluxes
- Connections across urban-regional-global scales

Hydrocarbon Measurements - 1997

- Sampling from 6m above canopy
- Trapped on Carbon Black and Molecular Sieve at -80°C
- 20 minute averages on PLOT Rt-Alumina and DB-WAX columns
- Detection limit: 6-8 pptv
- Precision: 6%

Blodgett - July 1997

Blodgett - Diurnal Pattern

Air Observed at Blodgett in the Mornings is Clean Continental Background

Fraction of Sacramento Plume

Loss by Reaction with OH

Summary

- Downslope flow brings extremely clean air masses to the foothills with continental background levels of anthropogenic hydrocarbons
- Upslope flow transports the expanding and diffusing Sacramento plume. By the time it gets to Blodgett, this plume is a mixture of 20% Sacramento air and 80% background air.
- Short-lived hydrocarbons constrain the gross oxidation during transport. Assuming a 10 hour transit time and an OH distribution peaked at noon, we estimate peak [OH] ≈ 1x10⁷ molecules/cm³ (0.3 ppt). Similar values have been observed in rural sites in Colorado and Germany.

Ozone Production Photochemistry

Nitrogen Oxide Measurements

NO & NO

- NO detection with TECO 42CTL (extra thanks to Ash & CARB for the loan)
- Accuracy: ± 10%
- Background: ±50 ppt
- $NO_v => NO$ with MO converter (95%)

\underline{NO}_2

- LIF detection
- Sensitivity: 85 ppt (10sec) -1998
 - current 15ppt (10sec)
- Accuracy: \pm 5%

Blodgett Forest NO_y - Diurnal Cycle

Blodgett Forest 1998 - NO₂

Blodgett Forest NO₂ - Diurnal Cycle

Transport of NO_x

Oxidation of NO_x

- Mid-day overpredicted
 - •NO_x deposition
 - •NO_x reactions with RO₂ & RO
- Peak underpredicted
 - •NO_x source
 - •NO_x reformation most likely from PAN compounds
 - •PAN formation competes with OH+NO₂

Transport and Oxidation of NO_y

Time of Day (PST)

- HNO₃ deposition of $V_d = 0.9$ cm/s would give good agreement.
- •However, deposition rates observed in other studies, 5-7 cm/s, imply only 37% NO_x is converted to HNO₃. This is consistent with other evidence for PAN & biogenic nitrate formation.

Blodgett Forest 1997 - Ozone

Blodgett Forest O₃ - Diurnal Cycle

Transport, Deposition, and Chemical Production of Ozone

Drawn from USGS maps

Highest Ozone Observations - July 1997

What Contributes to the High Ozone Events?

- 50% more transport from Sacramento Valley
 - 30% of Sacramento air at Blodgett instead of 20%
- No change in the oxidation rate during transport
 - the product of OH & time is constant
- Peak NO_v increases 40%
- Peak NO_x decreases 23%
- Temperature increases 2°C

Conclusions:

- Observations of hydrocarbons, meteorology, ozone, NO_x, and NO_y provide insight into and quantitative constraints on :
 - Transport and mixing/diffusion of the urban plume
 - OH abundances
 - NO_v deposition and emission rates
 - Competition between HNO₃ and organic nitrate formation
- The highest ozone is observed when transport of the NO_y rich urban plume penetrates deep into the foothills. These events are also correlated with warmer days (+2°C) when biogenic emissions are highest and PAN reservoirs of NO_x are least stable.
- Future work will focus on understanding the role of biogenically derived nitrates (e.g. isoprene nitrates) on ozone and on measuring NO_y deposition rates.